Teaching Testing of Interrupt and
Exception Handling Code

W. Morven Gentleman
Dalhousie University
Morven.Gentleman@dal.ca



Context of Topic

e Conventional view of programming:

— Deterministic flow of control,
expressed by the programmer

— Made up of:
« Seqguential execution
e Conditional execution
e Loops
e Procedure invocation



Interrupt and Exception Handler

Control flow triggered by events

Interrupts
— Event possibly unrelated to thread of control

Exceptions
— Event may be synchronized to thread of control

This commonly leads to multi-thread
concurrency or to state machines or to ...



Niche, but significant

e OS and device driver products

 Embedded systems, computers that control
and monitor physical systems, are all about
Interaction with the external world: even
cell phones and microwave ovens

— External world may not follow the normal case

— Typically 75% or more of code in an embedded
system Is exception handling



Testing Challenges

Reliability requirements are often high

This kind of programming is unfamiliar to
many: they make unusual mistakes

The actions and output are data and time
dependent, so often appear to be
Irreproducible

Often the consequences are not directly
observable



Teaching Testing Challenges

Need to understand what kinds of defects to look
for

Need to provoke problematic situations

Need to become facile with appropriate tools but
more, to understand what to use them for

Standard software system abstractions hide detalls
to which access Is needed

Many students are novices to this level of
computing



Typical Interrupt Defects

Overlooked: no code for this situation
Race conditions

Activation too late or too early

Missed interrupts

Interrupt not cleared

Inappropriate relative priority or masking
Improper software runtime interface




Typical Exception Defects

Overlooked: no sensor to raise the exception
Overlooked: no code to handle this situation
Handler for wrong exception

Wrong handler for particular exception instance

Invalid attem
Invalid attem
Invalid attem

nt to resume an operation
ot to retry an operation

ot to terminate an operation

Inappropriate cleanup after terminating operation



Why Use Exceptions Anyway?

« EXxception handling:issues and a proposed
notation, John B Goodenough, CACM V18N12
Dec 1975, pp. 683-696

— To deal with impending or actual failure
« Range failure or domain failure

— To Indicate the significance of a valid result
— To permit an invoker to monitor an operation

 In short, exception are not needed just for bugs!



Exception Complications

« Circumlocution to get around language
— Many languages only support operation abort
— No exception parameter In current languages
— Poppng many stack levels incurs overhead
— No concept of deferred processing
— No provision for multi-thread



Black Box vs White Box vs ?

What situations warrant investigation?

Hard to trigger interrupt or exception
situation

Hard to show a critical race does NOT exist
Dies conventional white box approach help?
Exploratory white box?




Testing Tools

 Simulators and Emulators

— Virtual Machines
- ICE
 Sequential triggering

— External hardware

o Computer(s) simulating external world
 synchronized with thread (US patent 6167479)

* Debugger (especially scriptable)



More Testing Tools

Circular history buffers
Bit vectors to record where control has been

Audit routines (concurrently) traversing data
structures performing consistency and validity
checks

JVM or CLI bytecode pattern match and transform
Commercial GUI test tools don’t seem to help



Terminology

Disambiguating interrupts

— A physical interrupt may not correspond to a single
logical interrupt

Spurious Interrupt

— An interrupt from an unrecognized source
Unanticipated interrupt

— An interrupt which should not happen in this context

Deferred interrupt handling

— Interrupt not processed immediately because of
masking or preemptive priority



Terminology (cont.)

 First Level and Second Level Handlers
— Also called upper and lower halves
— Used for some hardware and some OS designs

Handler has two parts, only first part triggered
0y hardware interrupt. Second part run by high

priority thread below hardware priority level



