
Teaching Testing of Interrupt and
Exception Handling Code

W. Morven Gentleman
Dalhousie University

Morven.Gentleman@dal.ca

Context of Topic

• Conventional view of programming:
– Deterministic flow of control,

expressed by the programmer
– Made up of:

• Sequential execution
• Conditional execution
• Loops
• Procedure invocation

Interrupt and Exception Handler

• Control flow triggered by events
• Interrupts

– Event possibly unrelated to thread of control
• Exceptions

– Event may be synchronized to thread of control
• This commonly leads to multi-thread

concurrency or to state machines or to …

Niche, but significant

• OS and device driver products
• Embedded systems, computers that control

and monitor physical systems, are all about
interaction with the external world: even
cell phones and microwave ovens
– External world may not follow the normal case
– Typically 75% or more of code in an embedded

system is exception handling

Testing Challenges

• Reliability requirements are often high
• This kind of programming is unfamiliar to

many: they make unusual mistakes
• The actions and output are data and time

dependent, so often appear to be
irreproducible

• Often the consequences are not directly
observable

Teaching Testing Challenges

• Need to understand what kinds of defects to look
for

• Need to provoke problematic situations
• Need to become facile with appropriate tools but

more, to understand what to use them for
• Standard software system abstractions hide details

to which access is needed
• Many students are novices to this level of

computing

Typical Interrupt Defects

• Overlooked: no code for this situation
• Race conditions
• Activation too late or too early
• Missed interrupts
• Interrupt not cleared
• Inappropriate relative priority or masking
• Improper software runtime interface

Typical Exception Defects

• Overlooked: no sensor to raise the exception
• Overlooked: no code to handle this situation
• Handler for wrong exception
• Wrong handler for particular exception instance
• Invalid attempt to resume an operation
• Invalid attempt to retry an operation
• Invalid attempt to terminate an operation
• Inappropriate cleanup after terminating operation

Why Use Exceptions Anyway?

• Exception handling:issues and a proposed
notation, John B Goodenough, CACM V18N12
Dec 1975, pp. 683-696
– To deal with impending or actual failure

• Range failure or domain failure

– To indicate the significance of a valid result
– To permit an invoker to monitor an operation

• In short, exception are not needed just for bugs!

Exception Complications

• Circumlocution to get around language
– Many languages only support operation abort
– No exception parameter in current languages
– Poppng many stack levels incurs overhead
– No concept of deferred processing
– No provision for multi-thread

Black Box vs White Box vs ?

• What situations warrant investigation?
• Hard to trigger interrupt or exception

situation
• Hard to show a critical race does NOT exist
• Dies conventional white box approach help?
• Exploratory white box?

Testing Tools

• Simulators and Emulators
– Virtual Machines
– ICE

• Sequential triggering

– External hardware
• Computer(s) simulating external world
• synchronized with thread (US patent 6167479)

• Debugger (especially scriptable)

More Testing Tools

• Circular history buffers
• Bit vectors to record where control has been
• Audit routines (concurrently) traversing data

structures performing consistency and validity
checks

• JVM or CLI bytecode pattern match and transform
• Commercial GUI test tools don’t seem to help

Terminology

• Disambiguating interrupts
– A physical interrupt may not correspond to a single

logical interrupt
• Spurious interrupt

– An interrupt from an unrecognized source
• Unanticipated interrupt

– An interrupt which should not happen in this context
• Deferred interrupt handling

– Interrupt not processed immediately because of
masking or preemptive priority

Terminology (cont.)

• First Level and Second Level Handlers
– Also called upper and lower halves
– Used for some hardware and some OS designs
– Handler has two parts, only first part triggered

by hardware interrupt. Second part run by high
priority thread below hardware priority level

